Developmental Analysis of Hippocampal Mossy Fiber Mutant Mouse with Inherited Spike-Wave Seizures Outgrowth in a

نویسندگان

  • Xiaoxi Qiao
  • Jeffrey L. Noebels
چکیده

Neural firing patterns are an essential determinant of normal axon terminal growth and synaptic connectivity in developing afferent pathways, but the trophic role of synchronous activity in associative neural networks is less well defined. We examined the ontogeny of inherited synchronous hippocampal network discharges and mossy fiber innervation patterns at sequential stages of development in the stargazer (sfg) mutant, a single-locus mouse mutation expressing generalized spike-wave epilepsy. Brief bursts of G/set repetitive discharges arise spontaneously on postnatal days 17-l 6 and persistently activate neocortical and hippocampal networks throughout adulthood. We found a striking pattern of mossy fiber recurrent axon collateral sprouting in the inner molecular layer of dentate gyrus in the adult sfg hippocampus. Sprouting is not apparent until 4-6 weeks following seizure onset, but then steadily intensifies with continued synchronous activation. In the adult mutant, axon outgrowth is accompanied by a mild selective loss of hilar interneurons without gliosis. These data indicate that hypersynchronous stimulation during late postnatal brain development is linked, following a prolonged latent period, to significant fiber outgrowth and synaptic reorganization within the hippocampal formation. Since the pattern of synchronous activation in the sfg mutant strongly resembles that seen in human spike-wave absence epilepsy, the synaptic plasticity described in this model has important implications for normal brain development in this common disorder. [

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tissue Plasminogen Activator (Tpa/Plasmin) Extracellular Proteolytic System Regulates Seizure-Induced Hippocampal Mossy Fiber Outgrowth through a Proteoglycan Substrate

Short seizure episodes are associated with remodeling of neuronal connections. One region where such reorganization occurs is the hippocampus, and in particular, the mossy fiber pathway. Using genetic and pharmacological approaches, we show here a critical role in vivo for tissue plasminogen activator (tPA), an extracellular protease that converts plasminogen to plasmin, to induce mossy fiber s...

متن کامل

Nonobligate role of early or sustained expression of immediate-early gene proteins c-fos, c-jun, and Zif/268 in hippocampal mossy fiber sprouting.

Axon sprouting in dentate granule cells is an important model of structural plasticity in the hippocampus. Although the process can be triggered by deafferentation, intense activation of glutamate receptors, and other convulsant stimuli, the specific molecular steps required to initiate and sustain mossy fiber (MF) reorganization are unknown. The cellular immediate early genes (IEGs) c-fos, c-j...

متن کامل

Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats.

In the rat hippocampal formation, degeneration of CA4-derived afferent fibers provokes the growth of mossy fiber collaterals into the fascia dentata. These aberrant fibers subsequently form granule cell-granule cell synapses. The hippocampal slice preparation was employed to determine whether these recurrent connections are electrophysiologically functional. Hippocampal slices were prepared 12 ...

متن کامل

Seizures induce dramatic and distinctly different changes in enkephalin, dynorphin, and CCK immunoreactivities in mouse hippocampal mossy fibers.

Light microscopic immunocytochemical techniques were used to evaluate the influence of recurrent limbic seizure activity on the immunoreactivity for 3 neuropeptides--enkephalin, dynorphin, and cholecystokinin (CCK)--contained within the mouse hippocampal mossy fiber axonal system. Seizures were induced either by the placement of a small unilateral electrolytic lesion in the dentate gyrus hilus ...

متن کامل

Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation

Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity's net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003